NASA’s James Webb Space Telescope to target Jupiter’s Great Red Spot

NASA’s James Webb Space Telescope to target Jupiter’s Great Red Spot

By Eric Villard / Laura Betz
NASA’s Goddard Space Flight Center

NASA’s James Webb Space Telescope, the most ambitious and complex space observatory ever built, will use its unparalleled infrared capabilities to study Jupiter’s Great Red Spot, shedding new light on the enigmatic storm and building upon data returned from NASA’s Hubble Space Telescope and other observatories.

Jupiter’s iconic storm is on the Webb telescope’s list of targets chosen by guaranteed time observers, scientists who helped develop the incredibly complex telescope and among the first to use it to observe the universe. One of the telescope’s science goals is to study planets, including the mysteries still held by the planets in our own solar system from Mars and beyond.

Leigh Fletcher, a senior research fellow in planetary science at the University of Leicester in the United Kingdom, is the lead scientist on the Webb telescope’s observations of Jupiter’s storm. His team is part of a larger effort to study several targets in our solar system with Webb, spearheaded by astronomer Heidi Hammel, the executive vice president of the Association of Universities for Research in Astronomy (AURA). NASA selected Hammel as an interdisciplinary scientist for Webb in 2002.

Generations of astronomers have studied the Great Red Spot; the storm has been monitored since 1830, but it has possibly existed for more than 350 years. The reason for the storm’s longevity largely remains a mystery, and Fletcher explained that the key to understanding the formation of storms on Jupiter is to witness their full life cycle — growing, shrinking, and eventually dying. We did not see the Great Red Spot form, and it may not die anytime soon (though it has been shrinking, as documented by images from NASA’s Hubble Space Telescope and other observatories), so scientists must rely on observing “smaller and fresher” storms on the planet to see how they begin and evolve, something that Webb may do in the future, said Fletcher.
___
Chaotic Clouds of Jupiter

Editor: Tony Greicius
NASA

This image captures swirling cloud belts and tumultuous vortices within Jupiter’s northern hemisphere.

NASA’s Juno spacecraft took this color-enhanced image at 10:23 p.m. PDT on May 23, 2018 (1:23 a.m. EDT on May 24), as the spacecraft performed its 13th close flyby of Jupiter. At the time, Juno was about 9,600 miles (15,500 kilometers) from the planet’s cloud tops, above a northern latitude of 56 degrees.

The region seen here is somewhat chaotic and turbulent, given the various swirling cloud formations. In general, the darker cloud material is deeper in Jupiter’s atmosphere, while bright cloud material is high. The bright clouds are most likely ammonia or ammonia and water, mixed with a sprinkling of unknown chemical ingredients.

A bright oval at bottom center stands out in the scene. This feature appears uniformly white in ground-based telescope observations. However, with JunoCam we can observe the fine-scale structure within this weather system, including additional structures within it. There is not significant motion apparent in the interior of this feature; like the Great Red Spot, its winds probably slows down greatly toward the center.

Citizen scientists Gerald Eichstädt and Seán Doran created this image using data from the spacecraft’s JunoCam imager.

About Dilemma X

Dilemma X, LLC provides research dedicated to the progression of economic development. Our services aid clients in enhancing overall production statistics. Please visit http://www.dilemma-x.com for more information

View all posts by Dilemma X

Subscribe

Subscribe to our RSS feed and social profiles to receive updates.

No comments yet.

Leave a comment